国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術文章
文章詳情頁

詳解從Linux源碼看Socket(TCP)的bind

瀏覽:115日期:2024-04-08 18:22:01
目錄一、一個最簡單的Server端例子二、bind系統調用2.1、inet_bind2.2、inet_csk_get_port三、判斷端口號是否沖突四、SO_REUSEADDR和SO_REUSEPORT五、SO_REUSEADDR六、SO_REUSEPORT七、總結一、一個最簡單的Server端例子

眾所周知,一個Server端Socket的建立,需要socket、bind、listen、accept四個步驟。

詳解從Linux源碼看Socket(TCP)的bind

代碼如下:

void start_server(){ // server fd int sockfd_server; // accept fd int sockfd; int call_err; struct sockaddr_in sock_addr; sockfd_server = socket(AF_INET,SOCK_STREAM,0); memset(&sock_addr,0,sizeof(sock_addr)); sock_addr.sin_family = AF_INET; sock_addr.sin_addr.s_addr = htonl(INADDR_ANY); sock_addr.sin_port = htons(SERVER_PORT); // 這邊就是我們今天的聚焦點bind call_err=bind(sockfd_server,(struct sockaddr*)(&sock_addr),sizeof(sock_addr)); if(call_err == -1){fprintf(stdout,'bind error!n');exit(1); } // listen call_err=listen(sockfd_server,MAX_BACK_LOG); if(call_err == -1){fprintf(stdout,'listen error!n');exit(1); }}

首先我們通過socket系統調用創建了一個socket,其中指定了SOCK_STREAM,而且最后一個參數為0,也就是建立了一個通常所有的TCP Socket。在這里,我們直接給出TCP Socket所對應的ops也就是操作函數。

詳解從Linux源碼看Socket(TCP)的bind

二、bind系統調用

bind將一個本地協議地址(protocol:ip:port)賦予一個套接字。例如32位的ipv4地址或128位的ipv6地址+16位的TCP活UDP端口號。

#include <sys/socket.h>// 返回,若成功則為0,若出錯則為-1int bind(int sockfd, const struct sockaddr *myaddr, socklen_t addrlen);

好了,我們直接進入Linux源碼調用棧吧。

bind

// 這邊由系統調用的返回值會被glibc的INLINE_SYSCALL包一層

// 若有錯誤,則設置返回值為-1,同時將系統調用的返回值的絕對值設置給errno

|->INLINE_SYSCALL (bind......);

|->SYSCALL_DEFINE3(bind......);

/* 檢測對應的描述符fd是否存在,不存在,返回-BADF

|->sockfd_lookup_light

|->sock->ops->bind(inet_stream_ops)

|->inet_bind

|->AF_INET兼容性檢查

|-><1024端口權限檢查

/* bind端口號校驗or選擇(在bind為0的時候)

|->sk->sk_prot->get_port(inet_csk_get_port)

2.1、inet_bind

inet_bind這個函數主要做了兩個操作,一是檢測是否允許bind,而是獲取可用的端口號。這邊值得注意的是。如果我們設置需要bind的端口號為0,那么Kernel會幫我們隨機選擇一個可用的端口號來進行bind!

// 讓系統隨機選擇可用端口號sock_addr.sin_port = 0;call_err=bind(sockfd_server,(struct sockaddr*)(&sock_addr),sizeof(sock_addr));

讓我們看下inet_bind的流程

詳解從Linux源碼看Socket(TCP)的bind

值得注意的是,由于對于<1024的端口號需要CAP_NET_BIND_SERVICE,我們在監聽80端口號(例如啟動nginx時候),需要使用root用戶或者賦予這個可執行文件CAP_NET_BIND_SERVICE權限。

use root 

 or

setcap cap_net_bind_service=+eip ./nginx 

我們的bind允許綁定到0.0.0.0即INADDR_ANY這個地址上(一般都用這個),它意味著內核去選擇IP地址。對我們最直接的影響如下圖所示:

詳解從Linux源碼看Socket(TCP)的bind

然后,我們看下一個比較復雜的函數,即可用端口號的選擇過程inet_csk_get_port(sk->sk_prot->get_port)

2.2、inet_csk_get_port

第一段,如果bind port為0,隨機搜索可用端口號

直接上源碼,第一段代碼為端口號為0的搜索過程

// 這邊如果snum指定為0,則隨機選擇端口int inet_csk_get_port(struct sock *sk, unsigned short snum){......// 這邊net_random()采用prandom_u32,是偽(pseudo)隨機數smallest_rover = rover = net_random() % remaining + low;smallest_size = -1;// snum=0,隨機選擇端口的分支if(!sum){// 獲取內核設置的端口號范圍,對應內核參數/proc/sys/net/ipv4/ip_local_port_range inet_get_local_port_range(&low,&high);......do{if(inet_is_reserved_local_port(rover)goto next_nonlock; // 不選擇保留端口號......inet_bind_bucket_for_each(tb, &head->chain)// 在同一個網絡命名空間下存在和當前希望選擇的port rover一樣的portif (net_eq(ib_net(tb), net) && tb->port == rover) {// 已經存在的sock和當前新sock都開啟了SO_REUSEADDR,且當前sock狀態不為listen// 或者// 已經存在的sock和當前新sock都開啟了SO_REUSEPORT,而且兩者都是同一個用戶if (((tb->fastreuse > 0 && sk->sk_reuse && sk->sk_state != TCP_LISTEN) || (tb->fastreuseport > 0 && sk->sk_reuseport && uid_eq(tb->fastuid, uid))) && (tb->num_owners < smallest_size || smallest_size == -1)) { // 這邊是選擇一個最小的num_owners的port,即同時bind或者listen最小個數的port // 因為一個端口號(port)在開啟了so_reuseaddr/so_reuseport之后,是可以多個進程同時使用的smallest_size = tb->num_owners;smallest_rover = rover;if (atomic_read(&hashinfo->bsockets) > (high - low) + 1 && !inet_csk(sk)->icsk_af_ops->bind_conflict(sk, tb, false)) { // 進入這個分支,表明可用端口號已經不夠了,同時綁定當前端口號和之前已經使用此port的不沖突,則我們選擇這個端口號(最小的)snum = smallest_rover;goto tb_found;}}// 若端口號不沖突,則選擇這個端口if (!inet_csk(sk)->icsk_af_ops->bind_conflict(sk, tb, false)) {snum = rover;goto tb_found;}goto next;}break;// 直至遍歷完所有的可用port} while (--remaining > 0);}.......}

由于,我們在使用bind的時候很少隨機端口號(在TCP服務器來說尤其如此),這段代碼筆者就注釋一下。一般只有一些特殊的遠程過程調用(RPC)中會使用隨機Server端隨機端口號。

第二段,找到端口號或已經指定

have_snum:inet_bind_bucket_for_each(tb, &head->chain)if (net_eq(ib_net(tb), net) && tb->port == snum)goto tb_found;}tb = NULL;goto tb_not_foundtb_found:// 如果此port已被bindif (!hlist_empty(&tb->owners)) {// 如果設置為強制重用,則直接成功if (sk->sk_reuse == SK_FORCE_REUSE)goto success;}if (((tb->fastreuse > 0 && sk->sk_reuse && sk->sk_state != TCP_LISTEN) || (tb->fastreuseport > 0 && sk->sk_reuseport && uid_eq(tb->fastuid, uid))) && smallest_size == -1) { // 這個分支表明之前bind的port和當前sock都設置了reuse同時當前sock狀態不為listen// 或者同時設置了reuseport而且是同一個uid(注意,設置了reuseport后,可以同時listen同一個port了)goto success;} else {ret = 1;// 檢查端口是否沖突if (inet_csk(sk)->icsk_af_ops->bind_conflict(sk, tb, true)) {if (((sk->sk_reuse && sk->sk_state != TCP_LISTEN) || (tb->fastreuseport > 0 && sk->sk_reuseport && uid_eq(tb->fastuid, uid))) && smallest_size != -1 && --attempts >= 0) { // 若沖突,但是設置了reuse非listen狀態或者設置了reuseport且出在同一個用戶下 // 則可以進行重試spin_unlock(&head->lock);goto again;}goto fail_unlock;}// 不沖突,走下面的邏輯}tb_not_found:if (!tb && (tb = inet_bind_bucket_create(hashinfo->bind_bucket_cachep,net, head, snum)) == NULL)goto fail_unlock;// 設置fastreuse// 設置fastreuseportsuccess:......// 將當前sock鏈入tb->owner,同時tb->num_owners++inet_bind_hash(sk, tb, snum);ret = 0;// 返回bind(綁定)成功return ret;三、判斷端口號是否沖突

在上述源碼中,判斷端口號時否沖突的代碼為

inet_csk(sk)->icsk_af_ops->bind_conflict 也即 inet_csk_bind_conflictint inet_csk_bind_conflict(const struct sock *sk, const struct inet_bind_bucket *tb, bool relax){......sk_for_each_bound(sk2, &tb->owners) {// 這邊判斷表明,必須同一個接口(dev_if)才進入下內部分支,也就是說不在同一個接口端口的不沖突if (sk != sk2 && !inet_v6_ipv6only(sk2) && (!sk->sk_bound_dev_if || !sk2->sk_bound_dev_if || sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { if ((!reuse || !sk2->sk_reuse || sk2->sk_state == TCP_LISTEN) && (!reuseport || !sk2->sk_reuseport || (sk2->sk_state != TCP_TIME_WAIT && !uid_eq(uid, sock_i_uid(sk2))))) { // 在有一方沒設置reuse且sock2狀態為listen 同時 // 有一方沒設置reuseport且sock2狀態不為time_wait同時兩者的uid不一樣的時候const __be32 sk2_rcv_saddr = sk_rcv_saddr(sk2);if (!sk2_rcv_saddr || !sk_rcv_saddr(sk) || // ip地址一樣,才算沖突 sk2_rcv_saddr == sk_rcv_saddr(sk))break;}// 非放松模式,ip地址一樣,才算沖突...... return sk2 != NULL;}......}

上面代碼的邏輯如下圖所示:

詳解從Linux源碼看Socket(TCP)的bind

四、SO_REUSEADDR和SO_REUSEPORT

上面的代碼有點繞,筆者就講一下,對于我們日常開發要關心什么。

我們在上面的bind里面經常見到sk_reuse和sk_reuseport這兩個socket的Flag。這兩個Flag能夠決定是否能夠bind(綁定)成功。這兩個Flag的設置在C語言里面如下代碼所示:

setsockopt(sockfd_server, SOL_SOCKET, SO_REUSEADDR, &(int){ 1 }, sizeof(int)); setsockopt(sockfd_server, SOL_SOCKET, SO_REUSEPORT, &(int){ 1 }, sizeof(int));

在原生JAVA中

// java8中,原生的socket并不支持so_reuseport ServerSocket server = new ServerSocket(port); server.setReuseAddress(true);

在Netty(Netty版本 >= 4.0.16且Linux內核版本>=3.9以上)中,可以使用SO_REUSEPORT。

五、SO_REUSEADDR

在之前的源碼里面,我們看到判斷bind是否沖突的時候,有這么一個分支

(!reuse || !sk2->sk_reuse || sk2->sk_state == TCP_LISTEN) /* 暫忽略reuseport */){// 即有一方沒有設置}

如果sk2(即已bind的socket)是TCP_LISTEN狀態或者,sk2和新sk兩者都沒有設置_REUSEADDR的時候,可以判斷為沖突。

我們可以得出,如果原sock和新sock都設置了SO_REUSEADDR的時候,只要原sock不是Listen狀態,都可以綁定成功,甚至ESTABLISHED狀態也可以!

詳解從Linux源碼看Socket(TCP)的bind

這個在我們平常工作中,最常見的就是原sock處于TIME_WAIT狀態,這通常在我們關閉Server的時候出現,如果不設置SO_REUSEADDR,則會綁定失敗,進而啟動不來服務。而設置了SO_REUSEADDR,由于不是TCP_LISTEN,所以可以成功。

詳解從Linux源碼看Socket(TCP)的bind

這個特性在緊急重啟以及線下調試的非常有用,建議開啟。

六、SO_REUSEPORT

SO_REUSEPORT是Linux在3.9版本引入的新功能。

1.在海量高并發連接的創建時候,由于正常的模型是單線程listener分發,無法利用多核優勢,這就會成為瓶頸。

2.CPU緩存行丟失

我們看下一般的Reactor線程模型,

詳解從Linux源碼看Socket(TCP)的bind

明顯的其單線程listen/accept會存在瓶頸(如果采用多線程epoll accept,則會驚群,加WQ_FLAG_EXCLUSIVE可以解決一部分),尤其是在采用短鏈接的情況下。鑒于此,Linux增加了SO_REUSEPORT,而之前bind中判斷是否沖突的下面代碼也是為這個參數而添加的邏輯:

if(!reuseport || !sk2->sk_reuseport || (sk2->sk_state != TCP_TIME_WAIT && !uid_eq(uid, sock_i_uid(sk2))

這段代碼讓我們在多次bind的時候,如果設置了SO_REUSEPORT的時候不會報錯,也就是讓我們有個多線程(進程)bind/listen的能力。如下圖所示:

詳解從Linux源碼看Socket(TCP)的bind

而開啟了SO_REUSEPORT后,代碼棧如下:

tcp_v4_rcv|->__inet_lookup_skb |->__inet_lookup|->__inet_lookup_listener /* 用打分和偽隨機數等挑選出一個listen的sock */struct sock *__inet_lookup_listener(......){......if (score > hiscore) {result = sk;hiscore = score;reuseport = sk->sk_reuseport;if (reuseport) {phash = inet_ehashfn(net, daddr, hnum, saddr, sport);matches = 1;}} else if (score == hiscore && reuseport) {matches++;if (((u64)phash * matches) >> 32 == 0)result = sk;phash = next_pseudo_random32(phash);}......}

直接在內核層面做負載均衡,將accept的任務分散到不同的線程的不同socket上(Sharding),毫無疑問可以多核能力,大幅提升連接成功后的socket分發能力。

Nginx已經采用SO_REUSEPORT

Nginx在1.9.1版本的時候引入了SO_REUSEPORT,配置如下:

http { server { listen 80 reuseport; server_name localhost; # ... }}stream { server { listen 12345 reuseport; # ... }}

詳解從Linux源碼看Socket(TCP)的bind

詳解從Linux源碼看Socket(TCP)的bind

七、總結

Linux內核源碼博大精深,一個看起來簡單的bind系統調用竟然牽涉這么多,在里面可以挖掘出各種細節。在此分享出來,希望對讀者有所幫助。

以上就是詳解從Linux源碼看Socket(TCP)的bind的詳細內容,更多關于從Linux Socket(TCP) bind的資料請關注好吧啦網其它相關文章!

標簽: Linux系統
相關文章:
主站蜘蛛池模板: 伊人色在线观看 | 亚洲国产高清视频 | 久久免费视频网站 | 特级a级毛片 | 亚洲自拍图片区 | 免费观看成年的网站 | 亚洲韩国欧美一区二区三区 | 一级毛片不卡片免费观看 | 中国美女乱淫免费看视频 | 在线播放人成午夜免费视频 | 精品视频一区二区三区四区 | 97精品久久久久中文字幕 | 伊人蜜桃 | 日本精品视频一区二区三区 | 日本三级日产三级国产三级 | 日韩欧美一区二区三区在线 | 全球成人网 | 久久精品夜色国产 | 久久亚洲精品中文字幕二区 | 欧美5g影院天天爽天天看 | 99久久精品视香蕉蕉er热资源 | 国产波多野结衣中文在线播放 | 欧美一级免费在线观看 | 久久成人动漫 | 国产成年人网站 | 久久国内精品 | 日本高清久久 | 日本不卡在线一区二区三区视频 | 俺来也俺来也天天夜夜视频 | 国产一区二区在线观看免费 | 毛片毛片毛是个毛毛片 | 欧美日韩a∨毛片一区 | 亚洲加勒比久久88色综合 | 久久国产99| 在线观看香蕉免费啪在线观看 | 久国产精品视频 | 国产精品高清视亚洲一区二区 | 草草影院在线观看 | 免费观看欧美成人禁片 | 久久精品二三区 | 久久精品综合国产二区 |