MySQL數(shù)據(jù)庫(kù)的索引原理與慢SQL優(yōu)化的5大原則
我們知道一般的應(yīng)用系統(tǒng),讀寫比例在10:1左右,而且插入操作和一般的更新操作很少出現(xiàn)性能問(wèn)題,遇到最多的,也是最容易出問(wèn)題的,還是一些復(fù)雜的查詢操作,所以查詢語(yǔ)句的優(yōu)化顯然是重中之重。
本文旨在以開發(fā)工程師的角度來(lái)解釋數(shù)據(jù)庫(kù)索引的原理和如何優(yōu)化慢查詢。
MySQL索引原理
1.索引目的
索引的目的在于提高查詢效率,可以類比字典,如果要查“mysql”這個(gè)單詞,我們肯定需要定位到m字母,然后從下往下找到y(tǒng)字母,再找到剩下的sql。如果沒(méi)有索引,那么你可能需要把所有單詞看一遍才能找到你想要的,如果我想找到m開頭的單詞呢?或者ze開頭的單詞呢?是不是覺(jué)得如果沒(méi)有索引,這個(gè)事情根本無(wú)法完成?
2.索引原理
除了詞典,生活中隨處可見(jiàn)索引的例子,如火車站的車次表、圖書的目錄等。
它們的原理都是一樣的,通過(guò)不斷的縮小想要獲得數(shù)據(jù)的范圍來(lái)篩選出最終想要的結(jié)果,同時(shí)把隨機(jī)的事件變成順序的事件,也就是我們總是通過(guò)同一種查找方式來(lái)鎖定數(shù)據(jù)。
數(shù)據(jù)庫(kù)也是一樣,但顯然要復(fù)雜許多,因?yàn)椴粌H面臨著等值查詢,還有范圍查詢(>、<、between、in)、模糊查詢(like)、并集查詢(or)等等。
數(shù)據(jù)庫(kù)應(yīng)該選擇怎么樣的方式來(lái)應(yīng)對(duì)所有的問(wèn)題呢?我們回想字典的例子,能不能把數(shù)據(jù)分成段,然后分段查詢呢?最簡(jiǎn)單的如果1000條數(shù)據(jù),1到100分成第一段,101到200分成第二段,201到300分成第三段……這樣查第250條數(shù)據(jù),只要找第三段就可以了,一下子去除了90%的無(wú)效數(shù)據(jù)。但如果是1千萬(wàn)的記錄呢,分成幾段比較好?稍有算法基礎(chǔ)的同學(xué)會(huì)想到搜索樹,其平均復(fù)雜度是lgN,具有不錯(cuò)的查詢性能。但這里我們忽略了一個(gè)關(guān)鍵的問(wèn)題,復(fù)雜度模型是基于每次相同的操作成本來(lái)考慮的,數(shù)據(jù)庫(kù)實(shí)現(xiàn)比較復(fù)雜,數(shù)據(jù)保存在磁盤上,而為了提高性能,每次又可以把部分?jǐn)?shù)據(jù)讀入內(nèi)存來(lái)計(jì)算,因?yàn)槲覀冎涝L問(wèn)磁盤的成本大概是訪問(wèn)內(nèi)存的十萬(wàn)倍左右,所以簡(jiǎn)單的搜索樹難以滿足復(fù)雜的應(yīng)用場(chǎng)景。
3.磁盤IO與預(yù)讀
前面提到了訪問(wèn)磁盤,那么這里先簡(jiǎn)單介紹一下磁盤IO和預(yù)讀,磁盤讀取數(shù)據(jù)靠的是機(jī)械運(yùn)動(dòng),每次讀取數(shù)據(jù)花費(fèi)的時(shí)間可以分為尋道時(shí)間、旋轉(zhuǎn)延遲、傳輸時(shí)間三個(gè)部分,尋道時(shí)間指的是磁臂移動(dòng)到指定磁道所需要的時(shí)間,主流磁盤一般在5ms以下;旋轉(zhuǎn)延遲就是我們經(jīng)常聽說(shuō)的磁盤轉(zhuǎn)速,比如一個(gè)磁盤7200轉(zhuǎn),表示每分鐘能轉(zhuǎn)7200次,也就是說(shuō)1秒鐘能轉(zhuǎn)120次,旋轉(zhuǎn)延遲就是1/120/2 = 4.17ms;傳輸時(shí)間指的是從磁盤讀出或?qū)?shù)據(jù)寫入磁盤的時(shí)間,一般在零點(diǎn)幾毫秒,相對(duì)于前兩個(gè)時(shí)間可以忽略不計(jì)。那么訪問(wèn)一次磁盤的時(shí)間,即一次磁盤IO的時(shí)間約等于5+4.17 = 9ms左右,聽起來(lái)還挺不錯(cuò)的,但要知道一臺(tái)500 -MIPS的機(jī)器每秒可以執(zhí)行5億條指令,因?yàn)橹噶钜揽康氖请姷男再|(zhì),換句話說(shuō)執(zhí)行一次IO的時(shí)間可以執(zhí)行40萬(wàn)條指令,數(shù)據(jù)庫(kù)動(dòng)輒十萬(wàn)百萬(wàn)乃至千萬(wàn)級(jí)數(shù)據(jù),每次9毫秒的時(shí)間,顯然是個(gè)災(zāi)難。下圖是計(jì)算機(jī)硬件延遲的對(duì)比圖,供大家參考:
考慮到磁盤IO是非常高昂的操作,計(jì)算機(jī)操作系統(tǒng)做了一些優(yōu)化,當(dāng)一次IO時(shí),不光把當(dāng)前磁盤地址的數(shù)據(jù),而是把相鄰的數(shù)據(jù)也都讀取到內(nèi)存緩沖區(qū)內(nèi),因?yàn)榫植款A(yù)讀性原理告訴我們,當(dāng)計(jì)算機(jī)訪問(wèn)一個(gè)地址的數(shù)據(jù)的時(shí)候,與其相鄰的數(shù)據(jù)也會(huì)很快被訪問(wèn)到。每一次IO讀取的數(shù)據(jù)我們稱之為一頁(yè)(page)。
具體一頁(yè)有多大數(shù)據(jù)跟操作系統(tǒng)有關(guān),一般為4k或8k,也就是我們讀取一頁(yè)內(nèi)的數(shù)據(jù)時(shí)候,實(shí)際上才發(fā)生了一次IO,這個(gè)理論對(duì)于索引的數(shù)據(jù)結(jié)構(gòu)設(shè)計(jì)非常有幫助。
4.索引的數(shù)據(jù)結(jié)構(gòu)
前面講了生活中索引的例子,索引的基本原理,數(shù)據(jù)庫(kù)的復(fù)雜性,又講了操作系統(tǒng)的相關(guān)知識(shí),目的就是讓大家了解,任何一種數(shù)據(jù)結(jié)構(gòu)都不是憑空產(chǎn)生的,一定會(huì)有它的背景和使用場(chǎng)景,我們現(xiàn)在總結(jié)一下,我們需要這種數(shù)據(jù)結(jié)構(gòu)能夠做些什么,其實(shí)很簡(jiǎn)單,那就是:每次查找數(shù)據(jù)時(shí)把磁盤IO次數(shù)控制在一個(gè)很小的數(shù)量級(jí),最好是常數(shù)數(shù)量級(jí)。
那么我們就想到如果一個(gè)高度可控的多路搜索樹是否能滿足需求呢?就這樣,b+樹應(yīng)運(yùn)而生。
5.詳解b+樹
如上圖,是一顆b+樹,關(guān)于b+樹的定義可以參見(jiàn)B+樹,這里只說(shuō)一些重點(diǎn),淺藍(lán)色的塊我們稱之為一個(gè)磁盤塊,可以看到每個(gè)磁盤塊包含幾個(gè)數(shù)據(jù)項(xiàng)(深藍(lán)色所示)和指針(黃色所示),如磁盤塊1包含數(shù)據(jù)項(xiàng)17和35,包含指針P1、P2、P3,P1表示小于17的磁盤塊,P2表示在17和35之間的磁盤塊,P3表示大于35的磁盤塊。真實(shí)的數(shù)據(jù)存在于葉子節(jié)點(diǎn)即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非葉子節(jié)點(diǎn)只不存儲(chǔ)真實(shí)的數(shù)據(jù),只存儲(chǔ)指引搜索方向的數(shù)據(jù)項(xiàng),如17、35并不真實(shí)存在于數(shù)據(jù)表中。
6.b+樹的查找過(guò)程
如圖所示,如果要查找數(shù)據(jù)項(xiàng)29,那么首先會(huì)把磁盤塊1由磁盤加載到內(nèi)存,此時(shí)發(fā)生一次IO,在內(nèi)存中用二分查找確定29在17和35之間,鎖定磁盤塊1的P2指針,內(nèi)存時(shí)間因?yàn)榉浅6蹋ㄏ啾却疟P的IO)可以忽略不計(jì),通過(guò)磁盤塊1的P2指針的磁盤地址把磁盤塊3由磁盤加載到內(nèi)存,發(fā)生第二次IO,29在26和30之間,鎖定磁盤塊3的P2指針,通過(guò)指針加載磁盤塊8到內(nèi)存,發(fā)生第三次IO,同時(shí)內(nèi)存中做二分查找找到29,結(jié)束查詢,總計(jì)三次IO。真實(shí)的情況是,3層的b+樹可以表示上百萬(wàn)的數(shù)據(jù),如果上百萬(wàn)的數(shù)據(jù)查找只需要三次IO,性能提高將是巨大的,如果沒(méi)有索引,每個(gè)數(shù)據(jù)項(xiàng)都要發(fā)生一次IO,那么總共需要百萬(wàn)次的IO,顯然成本非常非常高。
7.b+樹性質(zhì)
1.通過(guò)上面的分析,我們知道IO次數(shù)取決于b+數(shù)的高度h,假設(shè)當(dāng)前數(shù)據(jù)表的數(shù)據(jù)為N,每個(gè)磁盤塊的數(shù)據(jù)項(xiàng)的數(shù)量是m,則有h=㏒(m+1)N,當(dāng)數(shù)據(jù)量N一定的情況下,m越大,h越小;而m = 磁盤塊的大小 / 數(shù)據(jù)項(xiàng)的大小,磁盤塊的大小也就是一個(gè)數(shù)據(jù)頁(yè)的大小,是固定的,如果數(shù)據(jù)項(xiàng)占的空間越小,數(shù)據(jù)項(xiàng)的數(shù)量越多,樹的高度越低。這就是為什么每個(gè)數(shù)據(jù)項(xiàng),即索引字段要盡量的小,比如int占4字節(jié),要比bigint8字節(jié)少一半。這也是為什么b+樹要求把真實(shí)的數(shù)據(jù)放到葉子節(jié)點(diǎn)而不是內(nèi)層節(jié)點(diǎn),一旦放到內(nèi)層節(jié)點(diǎn),磁盤塊的數(shù)據(jù)項(xiàng)會(huì)大幅度下降,導(dǎo)致樹增高。當(dāng)數(shù)據(jù)項(xiàng)等于1時(shí)將會(huì)退化成線性表。
2.當(dāng)b+樹的數(shù)據(jù)項(xiàng)是復(fù)合的數(shù)據(jù)結(jié)構(gòu),比如(name,age,sex)的時(shí)候,b+數(shù)是按照從左到右的順序來(lái)建立搜索樹的,比如當(dāng)(張三,20,F)這樣的數(shù)據(jù)來(lái)檢索的時(shí)候,b+樹會(huì)優(yōu)先比較name來(lái)確定下一步的所搜方向,如果name相同再依次比較age和sex,最后得到檢索的數(shù)據(jù);但當(dāng)(20,F)這樣的沒(méi)有name的數(shù)據(jù)來(lái)的時(shí)候,b+樹就不知道下一步該查哪個(gè)節(jié)點(diǎn),因?yàn)榻⑺阉鳂涞臅r(shí)候name就是第一個(gè)比較因子,必須要先根據(jù)name來(lái)搜索才能知道下一步去哪里查詢。比如當(dāng)(張三,F)這樣的數(shù)據(jù)來(lái)檢索時(shí),b+樹可以用name來(lái)指定搜索方向,但下一個(gè)字段age的缺失,所以只能把名字等于張三的數(shù)據(jù)都找到,然后再匹配性別是F的數(shù)據(jù)了, 這個(gè)是非常重要的性質(zhì),即索引的最左匹配特性。
建立索引的原則
1.最左前綴匹配原則
非常重要的原則,mysql會(huì)一直向右匹配直到遇到范圍查詢(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)順序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引則都可以用到,a,b,d的順序可以任意調(diào)整。
2.=和in可以亂序
比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意順序,mysql的查詢優(yōu)化器會(huì)幫你優(yōu)化成索引可以識(shí)別的形式
3.盡量選擇區(qū)分度高的列作為索引
區(qū)分度的公式是count(distinct col)/count(*),表示字段不重復(fù)的比例,比例越大我們掃描的記錄數(shù)越少,唯一鍵的區(qū)分度是1,而一些狀態(tài)、性別字段可能在大數(shù)據(jù)面前區(qū)分度就是0,那可能有人會(huì)問(wèn),這個(gè)比例有什么經(jīng)驗(yàn)值嗎?使用場(chǎng)景不同,這個(gè)值也很難確定,一般需要join的字段我們都要求是0.1以上,即平均1條掃描10條記錄
4.索引列不能參與計(jì)算,保持列“干凈”
比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很簡(jiǎn)單,b+樹中存的都是數(shù)據(jù)表中的字段值,但進(jìn)行檢索時(shí),需要把所有元素都應(yīng)用函數(shù)才能比較,顯然成本太大。所以語(yǔ)句應(yīng)該寫成create_time = unix_timestamp(’2014-05-29’);
5.盡量的擴(kuò)展索引,不要新建索引。
比如表中已經(jīng)有a的索引,現(xiàn)在要加(a,b)的索引,那么只需要修改原來(lái)的索引即可
查詢優(yōu)化神器 – explain命令
關(guān)于explain命令相信大家并不陌生,具體用法和字段含義可以參考官網(wǎng)explain-output,這里需要強(qiáng)調(diào)rows是核心指標(biāo),絕大部分rows小的語(yǔ)句執(zhí)行一定很快(有例外,下面會(huì)講到)。所以優(yōu)化語(yǔ)句基本上都是在優(yōu)化rows。
慢查詢優(yōu)化基本步驟
0.先運(yùn)行看看是否真的很慢,注意設(shè)置SQL_NO_CACHE
1.where條件單表查,鎖定最小返回記錄表。這句話的意思是把查詢語(yǔ)句的where都應(yīng)用到表中返回的記錄數(shù)最小的表開始查起,單表每個(gè)字段分別查詢,看哪個(gè)字段的區(qū)分度最高
2.explain查看執(zhí)行計(jì)劃,是否與1預(yù)期一致(從鎖定記錄較少的表開始查詢)
3.order by limit 形式的sql語(yǔ)句讓排序的表優(yōu)先查
4.了解業(yè)務(wù)方使用場(chǎng)景
5.加索引時(shí)參照建索引的幾大原則
6.觀察結(jié)果,不符合預(yù)期繼續(xù)從0分析
慢查詢優(yōu)化案例
下面幾個(gè)例子詳細(xì)解釋了如何分析和優(yōu)化慢查詢
復(fù)雜語(yǔ)句寫法
很多情況下,我們寫SQL只是為了實(shí)現(xiàn)功能,這只是第一步,不同的語(yǔ)句書寫方式對(duì)于效率往往有本質(zhì)的差別,這要求我們對(duì)mysql的執(zhí)行計(jì)劃和索引原則有非常清楚的認(rèn)識(shí),請(qǐng)看下面的語(yǔ)句
select distinct cert.emp_id from cm_log cl inner join ( select emp.id as emp_id, emp_cert.id as cert_id from employee emp left join emp_certificate emp_cert on emp.id = emp_cert.emp_id where emp.is_deleted=0 ) cert on ( cl.ref_table="Employee" and cl.ref_oid= cert.emp_id ) or ( cl.ref_table="EmpCertificate" and cl.ref_oid= cert.cert_id ) where cl.last_upd_date >="2013-11-07 15:03:00" and cl.last_upd_date<="2013-11-08 16:00:00";
0.先運(yùn)行一下,53條記錄 1.87秒,又沒(méi)有用聚合語(yǔ)句,比較慢
53 rows in set (1.87 sec)
1.explain
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+| 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where; Using temporary || 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 63727 | Using where; Using join buffer || 2 | DERIVED | emp | ALL | NULL | NULL | NULL | NULL | 13317 | Using where || 2 | DERIVED | emp_cert | ref | emp_certificate_empid | emp_certificate_empid | 4 | meituanorg.emp.id | 1 | Using index |+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
簡(jiǎn)述一下執(zhí)行計(jì)劃,首先mysql根據(jù)idx_last_upd_date索引掃描cm_log表獲得379條記錄;然后查表掃描了63727條記錄,分為兩部分,derived表示構(gòu)造表,也就是不存在的表,可以簡(jiǎn)單理解成是一個(gè)語(yǔ)句形成的結(jié)果集,后面的數(shù)字表示語(yǔ)句的ID。derived2表示的是ID = 2的查詢構(gòu)造了虛擬表,并且返回了63727條記錄。我們?cè)賮?lái)看看ID = 2的語(yǔ)句究竟做了寫什么返回了這么大量的數(shù)據(jù),首先全表掃描employee表13317條記錄,然后根據(jù)索引emp_certificate_empid關(guān)聯(lián)emp_certificate表,rows = 1表示,每個(gè)關(guān)聯(lián)都只鎖定了一條記錄,效率比較高。獲得后,再和cm_log的379條記錄根據(jù)規(guī)則關(guān)聯(lián)。從執(zhí)行過(guò)程上可以看出返回了太多的數(shù)據(jù),返回的數(shù)據(jù)絕大部分cm_log都用不到,因?yàn)閏m_log只鎖定了379條記錄。
如何優(yōu)化呢?可以看到我們?cè)谶\(yùn)行完后還是要和cm_log做join,那么我們能不能之前和cm_log做join呢?仔細(xì)分析語(yǔ)句不難發(fā)現(xiàn),其基本思想是如果cm_log的ref_table是EmpCertificate就關(guān)聯(lián)emp_certificate表,如果ref_table是Employee就關(guān)聯(lián)employee表,我們完全可以拆成兩部分,并用union連接起來(lái),注意這里用union,而不用union all是因?yàn)樵Z(yǔ)句有“distinct”來(lái)得到唯一的記錄,而union恰好具備了這種功能。如果原語(yǔ)句中沒(méi)有distinct不需要去重,我們就可以直接使用union all了,因?yàn)槭褂胾nion需要去重的動(dòng)作,會(huì)影響SQL性能。
優(yōu)化過(guò)的語(yǔ)句如下
select emp.id from cm_log cl inner join employee emp on cl.ref_table = "Employee" and cl.ref_oid = emp.id where cl.last_upd_date >="2013-11-07 15:03:00" and cl.last_upd_date<="2013-11-08 16:00:00" and emp.is_deleted = 0 unionselect emp.id from cm_log cl inner join emp_certificate ec on cl.ref_table = "EmpCertificate" and cl.ref_oid = ec.id inner join employee emp on emp.id = ec.emp_id where cl.last_upd_date >="2013-11-07 15:03:00" and cl.last_upd_date<="2013-11-08 16:00:00" and emp.is_deleted = 0
4.不需要了解業(yè)務(wù)場(chǎng)景,只需要改造的語(yǔ)句和改造之前的語(yǔ)句保持結(jié)果一致
5.現(xiàn)有索引可以滿足,不需要建索引
6.用改造后的語(yǔ)句實(shí)驗(yàn)一下,只需要10ms 降低了近200倍!
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+| 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where || 1 | PRIMARY | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | Using where || 2 | UNION | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where || 2 | UNION | ec | eq_ref | PRIMARY,emp_certificate_empid | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | || 2 | UNION | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.ec.emp_id | 1 | Using where || NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | |+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+53 rows in set (0.01 sec)
明確應(yīng)用場(chǎng)景
舉這個(gè)例子的目的在于顛覆我們對(duì)列的區(qū)分度的認(rèn)知,一般上我們認(rèn)為區(qū)分度越高的列,越容易鎖定更少的記錄,但在一些特殊的情況下,這種理論是有局限性的
select * from stage_poi sp where sp.accurate_result=1 and ( sp.sync_status=0 or sp.sync_status=2 or sp.sync_status=4 );
0.先看看運(yùn)行多長(zhǎng)時(shí)間,951條數(shù)據(jù)6.22秒,真的很慢
951 rows in set (6.22 sec)
1.先explain,rows達(dá)到了361萬(wàn),type = ALL表明是全表掃描
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+| 1 | SIMPLE | sp | ALL | NULL | NULL | NULL | NULL | 3613155 | Using where |+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
2.所有字段都應(yīng)用查詢返回記錄數(shù),因?yàn)槭菃伪聿樵?0已經(jīng)做過(guò)了951條
3.讓explain的rows 盡量逼近951
看一下accurate_result = 1的記錄數(shù)
select count(*),accurate_result from stage_poi group by accurate_result;+----------+-----------------+| count(*) | accurate_result |+----------+-----------------+| 1023 | -1 || 2114655 | 0 || 972815 | 1 |+----------+-----------------+
我們看到accurate_result這個(gè)字段的區(qū)分度非常低,整個(gè)表只有-1,0,1三個(gè)值,加上索引也無(wú)法鎖定特別少量的數(shù)據(jù)
再看一下sync_status字段的情況
select count(*),sync_status from stage_poi group by sync_status;+----------+-------------+| count(*) | sync_status |+----------+-------------+| 3080 | 0 || 3085413 | 3 |+----------+-------------+
同樣的區(qū)分度也很低,根據(jù)理論,也不適合建立索引
問(wèn)題分析到這,好像得出了這個(gè)表無(wú)法優(yōu)化的結(jié)論,兩個(gè)列的區(qū)分度都很低,即便加上索引也只能適應(yīng)這種情況,很難做普遍性的優(yōu)化,比如當(dāng)sync_status 0、3分布的很平均,那么鎖定記錄也是百萬(wàn)級(jí)別的
4.找業(yè)務(wù)方去溝通,看看使用場(chǎng)景。業(yè)務(wù)方是這么來(lái)使用這個(gè)SQL語(yǔ)句的,每隔五分鐘會(huì)掃描符合條件的數(shù)據(jù),處理完成后把sync_status這個(gè)字段變成1,五分鐘符合條件的記錄數(shù)并不會(huì)太多,1000個(gè)左右。了解了業(yè)務(wù)方的使用場(chǎng)景后,優(yōu)化這個(gè)SQL就變得簡(jiǎn)單了,因?yàn)闃I(yè)務(wù)方保證了數(shù)據(jù)的不平衡,如果加上索引可以過(guò)濾掉絕大部分不需要的數(shù)據(jù)
5.根據(jù)建立索引規(guī)則,使用如下語(yǔ)句建立索引
alter table stage_poi add index idx_acc_status(accurate_result,sync_status);
6.觀察預(yù)期結(jié)果,發(fā)現(xiàn)只需要200ms,快了30多倍。
952 rows in set (0.20 sec)
我們?cè)賮?lái)回顧一下分析問(wèn)題的過(guò)程,單表查詢相對(duì)來(lái)說(shuō)比較好優(yōu)化,大部分時(shí)候只需要把where條件里面的字段依照規(guī)則加上索引就好,如果只是這種“無(wú)腦”優(yōu)化的話,顯然一些區(qū)分度非常低的列,不應(yīng)該加索引的列也會(huì)被加上索引,這樣會(huì)對(duì)插入、更新性能造成嚴(yán)重的影響,同時(shí)也有可能影響其它的查詢語(yǔ)句。
所以我們第4步調(diào)差SQL的使用場(chǎng)景非常關(guān)鍵,我們只有知道這個(gè)業(yè)務(wù)場(chǎng)景,才能更好地輔助我們更好的分析和優(yōu)化查詢語(yǔ)句。
慢查詢的案例就分析到這兒,以上只是一些比較典型的案例。
我們?cè)趦?yōu)化過(guò)程中遇到過(guò)超過(guò)1000行,涉及到16個(gè)表join的“垃圾SQL”,也遇到過(guò)線上線下數(shù)據(jù)庫(kù)差異導(dǎo)致應(yīng)用直接被慢查詢拖死,也遇到過(guò)varchar等值比較沒(méi)有寫單引號(hào),還遇到過(guò)笛卡爾積查詢直接把從庫(kù)搞死。再多的案例其實(shí)也只是一些經(jīng)驗(yàn)的積累,如果我們熟悉查詢優(yōu)化器、索引的內(nèi)部原理,那么分析這些案例就變得特別簡(jiǎn)單了。
以上就是MySQL數(shù)據(jù)庫(kù)的索引原理與慢SQL優(yōu)化的5大原則的詳細(xì)內(nèi)容,更多關(guān)于MySQL數(shù)據(jù)庫(kù)的索引原理與慢SQL優(yōu)化原則的資料請(qǐng)關(guān)注其它相關(guān)文章!
