国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術文章
文章詳情頁

python 的numpy庫中的mean()函數用法介紹

瀏覽:66日期:2022-08-04 14:00:54

1. mean() 函數定義:

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<class numpy._globals._NoValue at 0x40b6a26c>)[source]Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64intermediate and return values are used for integer inputs.

Parameters:

a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted.

axis : None or int or tuple of ints, optional

Axis or axes along which the means are computed. The default is to compute the mean of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.

If the default value is passed, then keepdims will not be passed through to the mean method of sub-classes of ndarray, however any non-default value will be. If the sub-classes sum method does not implement keepdims any exceptions will be raised.

Returns:

m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned.

2 mean()函數功能:求取均值

經常操作的參數為axis,以m * n矩陣舉例:

axis 不設置值,對 m*n 個數求均值,返回一個實數

axis = 0:壓縮行,對各列求均值,返回 1* n 矩陣

axis =1 :壓縮列,對各行求均值,返回 m *1 矩陣

舉例:

>>> import numpy as np>>> num1 = np.array([[1,2,3],[2,3,4],[3,4,5],[4,5,6]])>>> now2 = np.mat(num1)>>> now2matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6]])>>> np.mean(now2) # 對所有元素求均值3.5>>> np.mean(now2,0) # 壓縮行,對各列求均值matrix([[ 2.5, 3.5, 4.5]])>>> np.mean(now2,1) # 壓縮列,對各行求均值matrix([[ 2.], [ 3.], [ 4.], [ 5.]])

補充拓展:numpy的np.nanmax和np.max區別(坑)

numpy的np.nanmax和np.array([1,2,3,np.nan]).max()的區別(坑)

numpy中numpy.nanmax的官方文檔

原理

在計算dataframe最大值時,最先用到的一定是Series對象的max()方法(),最終結果是4。

s1 = pd.Series([1,2,3,4,np.nan])s1_max = s1.max()

但是筆者由于數據量巨大,列數較多,于是為了加快計算速度,采用numpy進行最大值的計算,但正如以下代碼,最終結果得到的是nan,而非4。發現,采用這種方式計算最大值,nan也會包含進去,并最終結果為nan。

s1 = pd.Series([1,2,3,4,np.nan])s1_max = s1.values.max()>>>nan

通過閱讀numpy的文檔發現,存在np.nanmax的函數,可以將np.nan排除進行最大值的計算,并得到想要的正確結果。

當然不止是max,min 、std、mean 均會存在列中含有np.nan時,s1.values.min /std/mean ()返回nan的情況。

速度區別

速度由快到慢依次:

s1 = pd.Series([1,2,3,4,5,np.nan])#速度由快至慢np.nanmax(s1.values) > np.nanmax(s1) > s1.max()

以上這篇python 的numpy庫中的mean()函數用法介紹就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 国产猛烈无遮掩视频免费网站男女 | 京野结衣免费一区二区 | 一级特级欧美a毛片免费 | 特级毛片在线播放 | 国产成人综合一区精品 | 欧美日韩精彩视频 | 美女视频免费黄色 | 午夜香蕉网 | 亚洲理论欧美理论在线观看 | 在线免费观看国产视频 | 精品一久久 | 久久―日本道色综合久久 | 国产亚洲欧美成人久久片 | 精品一区二区三区在线视频 | 在线观看国产精品日本不卡网 | 中国女人毛茸茸免费视频 | 日韩在线1 | 99在线播放视频 | 91日韩精品天海翼在线观看 | 欧美性高清视频免费看www | 国产成人美女福利在线观看 | 国产精品成人免费视频不卡 | 亚洲三级在线播放 | 三级黄色免费网站 | 真实的国产乱xxxx | 久久精品久久久 | 成人18免费软件 | 国产亚洲高清在线精品99 | 国产爽爽视频 | 国产三级三级三级三级 | 男女午夜视频在线观看 | 欧美激情一区二区亚洲专区 | 亚洲 欧美 成人 | 黄色免费在线网址 | 看一级毛片国产一级毛片 | 伊人情人综合网 | 欧美一级日韩一级亚洲一级 | av片免费大全在线观看不卡 | 中文国产成人精品久久96 | 欧美日韩高清性色生活片 | 日本人成在线视频免费播放 |