python 實現非極大值抑制算法(Non-maximum suppression, NMS)
NMS 算法在目標檢測,目標定位領域有較廣泛的應用。
算法原理
非極大值抑制算法(Non-maximum suppression, NMS)的本質是搜索局部極大值,抑制非極大值元素。
算法的作用
當算法對一個目標產生了多個候選框的時候,選擇 score 最高的框,并抑制其他對于改目標的候選框
適用場景
一幅圖中有多個目標(如果只有一個目標,那么直接取 score 最高的候選框即可)。
算法的輸入
算法對一幅圖產生的所有的候選框,以及每個框對應的 score (可以用一個 5 維數組 dets 表示,前 4 維表示四個角的坐標,第 5 維表示分數),閾值 thresh。
算法的輸出
正確的候選框組(dets 的一個子集)。
細節
起始,設所有的框都沒有被抑制,所有框按照 score 從大到小排序。 從第 0 個框(分數最高)開始遍歷:對于每一個框,如果該框沒有被抑制,就將所有與它 IoU 大于 thresh 的框設為抑制。 返回沒被抑制的框。參考代碼
# --------------------------------------------------------# Fast R-CNN# Copyright (c) 2015 Microsoft# Licensed under The MIT License [see LICENSE for details]# Written by Ross Girshick# --------------------------------------------------------import numpy as npcimport numpy as npcdef inline np.float32_t max(np.float32_t a, np.float32_t b): return a if a >= b else bcdef inline np.float32_t min(np.float32_t a, np.float32_t b): return a if a <= b else bdef cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh): cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0] cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1] cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2] cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3] cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4] cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1) cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1] cdef int ndets = dets.shape[0] cdef np.ndarray[np.int_t, ndim=1] suppressed = np.zeros((ndets), dtype=np.int) # nominal indices cdef int _i, _j # sorted indices cdef int i, j # temp variables for box i’s (the box currently under consideration) cdef np.float32_t ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) cdef np.float32_t xx1, yy1, xx2, yy2 cdef np.float32_t w, h cdef np.float32_t inter, ovr keep = [] for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue keep.append(i) ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1:continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh:suppressed[j] = 1 return keep
以上就是python 實現非極大值抑制算法(Non-maximum suppression, NMS)的詳細內容,更多關于python 非極大值抑制算法的資料請關注好吧啦網其它相關文章!
