国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術文章
文章詳情頁

python 牛頓法實現邏輯回歸(Logistic Regression)

瀏覽:3日期:2022-07-08 11:01:21

本文采用的訓練方法是牛頓法(Newton Method)。

代碼

import numpy as npclass LogisticRegression(object): ''' Logistic Regression Classifier training by Newton Method ''' def __init__(self, error: float = 0.7, max_epoch: int = 100): ''' :param error: float, if the distance between new weight and old weight is less than error, the process of traing will break. :param max_epoch: if training epoch >= max_epoch the processof traing will break. ''' self.error = error self.max_epoch = max_epoch self.weight = None self.sign = np.vectorize(lambda x: 1 if x >= 0.5 else 0) def p_func(self, X_): '''Get P(y=1 | x) :param X_: shape = (n_samples + 1, n_features) :return: shape = (n_samples) ''' tmp = np.exp(self.weight @ X_.T) return tmp / (1 + tmp) def diff(self, X_, y, p): '''Get derivative :param X_: shape = (n_samples, n_features + 1) :param y: shape = (n_samples) :param p: shape = (n_samples) P(y=1 | x) :return: shape = (n_features + 1) first derivative ''' return -(y - p) @ X_ def hess_mat(self, X_, p): '''Get Hessian Matrix :param p: shape = (n_samples) P(y=1 | x) :return: shape = (n_features + 1, n_features + 1) second derivative ''' hess = np.zeros((X_.shape[1], X_.shape[1])) for i in range(X_.shape[0]): hess += self.X_XT[i] * p[i] * (1 - p[i]) return hess def newton_method(self, X_, y): '''Newton Method to calculate weight :param X_: shape = (n_samples + 1, n_features) :param y: shape = (n_samples) :return: None ''' self.weight = np.ones(X_.shape[1]) self.X_XT = [] for i in range(X_.shape[0]): t = X_[i, :].reshape((-1, 1)) self.X_XT.append(t @ t.T) for _ in range(self.max_epoch): p = self.p_func(X_) diff = self.diff(X_, y, p) hess = self.hess_mat(X_, p) new_weight = self.weight - (np.linalg.inv(hess) @ diff.reshape((-1, 1))).flatten() if np.linalg.norm(new_weight - self.weight) <= self.error: break self.weight = new_weight def fit(self, X, y): ''' :param X_: shape = (n_samples, n_features) :param y: shape = (n_samples) :return: self ''' X_ = np.c_[np.ones(X.shape[0]), X] self.newton_method(X_, y) return self def predict(self, X) -> np.array: ''' :param X: shape = (n_samples, n_features] :return: shape = (n_samples] ''' X_ = np.c_[np.ones(X.shape[0]), X] return self.sign(self.p_func(X_))

測試代碼

import matplotlib.pyplot as pltimport sklearn.datasetsdef plot_decision_boundary(pred_func, X, y, title=None): '''分類器畫圖函數,可畫出樣本點和決策邊界 :param pred_func: predict函數 :param X: 訓練集X :param y: 訓練集Y :return: None ''' # Set min and max values and give it some padding x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole gid Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral) if title: plt.title(title) plt.show()

效果

python 牛頓法實現邏輯回歸(Logistic Regression)

更多機器學習代碼,請訪問 https://github.com/WiseDoge/plume

以上就是python 牛頓法實現邏輯回歸(Logistic Regression)的詳細內容,更多關于python 邏輯回歸的資料請關注好吧啦網其它相關文章!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 美国三级在线观看 | 国产成人精品久久一区二区三区 | 国产成人免费视频 | 91精品观看91久久久久久 | 日韩成人免费一级毛片 | 草草影院第一页yycccom | 波野多结衣在线观看 | 久久精品视频在线观看 | 久久精品国产亚洲精品2020 | 亚洲国产成人精品一区91 | 亚洲精品成人中文网 | 欧美在线成人免费国产 | 午夜日韩精品 | 久久成人免费观看草草影院 | 一级看片免费视频 | 免费视频观看在线www日本 | 免费观看一级一片 | 国产成人精品视频免费 | 久久一级视频 | 夜鲁夜鲁夜鲁在线观看福利 | 成人做爰视频www网站 | 欧美日韩国产高清一区二区三区 | 黄.www | 午夜精品视频在线观看美女 | 国产精品porn | 成人毛片免费在线观看 | 日韩一级免费视频 | 成年视频国产免费观看 | 欧美满嘴射 | 日韩精品久久久久久 | 国产精品日本欧美一区二区 | 91久久国产 | 日本韩国一区 | 欧美zoofilia杂交videos | 国产国产成人人免费影院 | 蜜桃88av | 国产做爰一区二区 | 国产一区精品在线 | www午夜 | 日韩精品一区二区三区乱码 | 久久久久久91香蕉国产 |